Сварочный инвертор — асимметричный (косой мост) с микроконтроллерным управлением
Силоваячасть сблоком питания и драйверами.
……….Представленный на схеме сварочный инверторпостроен по схеме однотактного прямохода. На первичную обмоткусварочного трансформатора с помощью двух ключей подаются однополярныеимпульсы выпрямленного сетевого напряжения с заполнением не более 42%. Магнитопровод трансформатора испытывает одностороннееподмагничивание. В паузах между импульсами магнитопроводразмагничивается по так называемой частной петле. Размагничивающий токблагодаря обратно включенным диодам возвращает магнитную энергию,запасённую в сердечнике трансформатора обратно в источник, подзаряжаяконденсаторы (2 x 1000 мкф x 400 В) накопителя.
……….На прямом ходу энергия передаётся внагрузку через сварочный трансформатор и прямо включенные диодывыпрямителя (2x150EBU04). В паузе между импульсами ток в нагрузкеподдерживается благодаря энергии, накопленной в дросселе. Электрическаяцепь в этом случае замыкается через обратные диоды (2x150EBU04). Хорошоизвестно, что на эти диоды приходится бОльшая нагрузка, чем на прямые.Причина – ток в паузе течёт дольше чем в импульсе.
……….Конденсатор 1200 мкф x 250 В включенный всварочные провода через резистор 4,3 Ом обеспечивает чёткое зажиганиедуги. Пожалуй, это одно из удачных схемных решений для поджига в косоммосте.
……….Ключи косого моста работают в режимежёсткого переключения. Причём режим включения заведомо облегчен всегдаприсутствующей индуктивностью рассеивания сварочного трансформатора. И,поскольку к моменту включения ключей считается, что магнитопровод трансформатора полностью размагничен, то по причине отсутствия тока впервичной обмотке, потерями на включение можно пренебречь. Потерина выключение – очень существенные. Для их снижения параллельнокаждому ключу установлены RCD-снабберы.
……….Для обеспечения чёткой работы ключей, вмоменты между включениями на их затворы подаётся отрицательноенапряжение благодаря специальной схеме включения драйверов. Каждыйдрайвер питается от гальванически изолированного источника (около 25 В)блока питания. Напряжение питания «верхнего” драйвераиспользуется для включения реле К1, контакты которого шунтируютпусковой резистор.
……….Блок питания (классический маломощныйфлайбэк) имеет 3 гальванически изолированных выхода. При исправныхдеталях начинает работать сразу. Напряжение для драйверов –23-25В. Напряжение 12 В используется для питания блока управления.
……….Существенные радиаторы нужно предусмотретьдля входного выпрямителя, ключей и выходного выпрямителя. От размеровэтих радиаторов и интенсивности их обдува будет зависетьпостоянная времени работы аппарата. Поскольку аппарат обеспечиваетсущественный сварочный ток (до 180 А), ключи нужно обязательно припаятьк медным пластинам толщиной 4 мм, затем эти «бутерброды”прикрутить к радиаторам через теплопроводную пасту. О том как этосделать написано здесь Вместе крепления ключей посадочное место радиатора должно быть идеальноплоским без сколов и раковин. Желательно чтобы в месте крепления ключейрадиатор имел сплошное тело толщиной не менее 10 мм. Как показалапрактика для лучшего отвода тепла не нужно изолировать ключи отрадиатора. Лучше изолировать радиатор от корпуса аппарата. Вобдув нужно поставить также трансформатор, дроссель и обязательно всерезисторы мощностью 25 и 30 Вт. Остальные элементы схемы в радиаторах иобдуве не нуждаются.
Блок управления
……….Блок управления построен на основераспространённого ШИМ-контроллера TL494 с задействованием одного каналарегулирования. Этот канал стабилизирует ток в дуге. Задание токаформирует микроконтроллер с помощью модуля CCP1 в режиме ШИМ на частотепримерно 75 кГц. Заполнение ШИМ будет определять напряжение наконденсаторе C1. Величина этого напряжения определяет величинусварочного тока.
……….С помощью микроконтроллера выполняется также блокировка инвертора. Если на вход DT(4) TL494 будет подан высокийлогический уровень, то импульсы на выходе Out исчезнут и инверторостановится. Появление логического нуля на выходе RA4 микроконтроллераприведёт к плавному старту инвертора, то есть к постепенному увеличениюзаполнения импульсов на выходе Out до максимального. Блокировкаинвертора используется в момент включения и при превышении температурырадиаторов.
Вот что получилосьв железе. Блокпитания, драйвера и блок управления на одной плате.
.В моём аппарате индикатор и клавиатураподключены к блоку управления через компьютерный шлейф. Шлейф проходитв непосредственной близости от радиаторов ключей и трансформатора. Вчистом виде такой конструктив приводил к ложному нажатию на клавиши.Пришлось применить следующие спец. меры. На шлейфодето ферритовое кольцо К28x16x9. Шлейф скручен (насколько позволялаего длина). Для клавиатуры и термостатов использованыдополнительные подтягивающие резисторы 1,8К, зашунтированныекерамическими конденсаторами 100 пкф. Такое схемное решениеобеспечило помехоустойчивость клавиатуры, полностью исключеныложные нажатия клавиш.
……….Хотя, моё мнение – нужно недопускать помехи в блок управления. Для этого блок управления долженбыть отделён от силовой части сплошным металлическим листом.
Настройка инвертора
……….Силовая часть пока обесточена.Предварительно проверенный блок питания подключаем к блоку управления ивключаем его в сеть. На индикаторе загорятся все восьмёрки, затемвключится реле и, если контакты термостатов замкнуты, то индикаторпокажет задание тока 20 А. Осциллографом проверяем напряжение назатворах ключей. Там должны быть прямоугольные импульсы с фронтами неболее 200 нс, частотой 40-50 кГц напряжением 13-15В в положительнойобласти и 10 В – в отрицательной. Причём в отрицательной областиимпульс должен быть заметно длиннее.
……….Если всё так, собираем полностью схемуинвертора и включаем его в сеть. На индикацию сначала будут выведенывосьмёрки, затем должно включиться реле и индикатор покажет 20 А.Кликая кнопками, пробуем изменять задание тока. Изменение задания токадолжно пропорционально изменять напряжение на конденсаторе C1. Если изменив задание тока не нажимать на кнопки более 1 минуты, топроизойдёт запись задания в энергонезависимую память. На индикаторекратковременно появится сообщение «ЗАПС”. При последующемвключении инвертора величина задания тока будет равна значению, котороезаписалось.
……….Если всё так, устанавливаем задание 20 А ивключаем в сварочные провода нагрузочный реостат сопротивлением 0,5 Ом.Реостат должен выдерживать протекание тока не менее 60 А. К выводамшунта подключаем вольтметр магнитоэлектрической системы со шкалой на 75мВ, например прибор Ц 4380. На нагруженном инверторе пытаемся изменятьзадание тока, и по показаниям вольтметра контролируем ток. В этомрежиме реостат может издавать звук, напоминающий звон. Его не стоитбоятся – это работает токоограничение. Ток должен менятьсяпропорционально заданию. Выставляем задание тока 50 А. Если показаниявольтметра не соответствуют 50 А, то на выключенном инверторе впаиваемсопротивление R1 другого номинала. Подбирая сопротивление R1 добиваемсясоответствие задания тока измеренному.
……….Проверяем работу термозащиты. Для этогообрываем цепь термостатов. На индикаторе высветиться надпись»EroC”. Импульсы на затворах ключей должны исчезнутьВосстанавливаем цепь термостатов. Индикатор должен показатьустановленный ток. На затворах ключей должны появиться импульсы. Ихдлительность должна плавно увеличится до максимальной.
……….Если всё так, можно попытаться варить.После 2-3-х минут сварки током 120-150 А выключаем инвертор из сети иищем 2 самых горячих радиатора. На них нужно установить защитныетермостаты. По возможности термостаты устанавливаются вне зоны обдува.
Прошивка для микроконтроллера PIC16F628:
В HEX формате : kosoy.rar
В SFR формате : kosoy.sfr
Автор конструкции: Руслан Липин
Связаться с автором можно по email (указан на схеме)
Комментариев пока нет ... Будьте первым, кто оставить свой ответ!